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Intuitive Design and Meshing of Non-Developable 
Ruled Surfaces 
Daniel Lordick

Introduction

The application of freeform surfaces in architectural design has to consider both the 
static requirements and the effort of fabrication. As a result most surfaces used 
are not as free as they appear to be. In fact, architects and engineers usually try to 
take advantage of special geometric properties, such as stability, dependent alone 
on the shape, and a feasible construction system that relies on a relatively simple 
concept of generation. For instance, the roof of the Sage Gateshead building by Fos-
ter and Partners (Foster 2005, pp. 168-173) consists of three surfaces of revolution 
with horizontal axes. The parts are joined seamlessly along the congruent meridian 
curves and yield the appearance of one large freeform (Figure 1). But because of the 
properties of rotational surfaces, it was possible to use planar quadrilateral panels 
for the roof tiling instead of a triangular mesh.
 
The features mentioned above, shape stability and a simple generation, apply par-
ticularly to the class of non-developable ruled surfaces (skew surfaces). They can be 
generated by constantly moving a straight line, for example by moving a hot wire 
through foam, or a diamond wire through stone. Skew surfaces offer a great free-
dom of figuration. Antonio Gaudí was one pioneer in the use of ruled surfaces. He 
extensively used one-sheet hyperboloids and hyperbolic paraboloids for the design 
of the Sagrada Família (Burri 2007, pp. 102-107). These surfaces were the answer 
to Gaudí’s question: how can complex shapes be crafted at the construction site? 
(Figure 2). Another famous example of the use of hyperbolic paraboloids is the 
Philips Pavilion designed by Le Corbusier and Iannis Xenakis for the 1958 Brussels 
World Fair. 
 

Figure 1: Section of the Sage Gateshaead building, façade to the waterfront (from: Foster 2005).
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Figure 2: One-sheet hyperboloid crafted with a ruler (from: Burry 2007).

Figure 3: Examples of quadrilateral meshes.
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This paper explores the implementation of ruled surfaces into the designing en-
vironment. Although ruled surfaces can be seen as a subset of NURBS surfaces 
spanning two curves, standard software provides no intuitive geometric approach. 
For instance, the existing tools lack control over the distribution and direction of 
the generators. One major goal of this paper is to transform non-developable ruled 
surfaces into planar quadrilateral meshes (called PQ meshes hereafter). At first this 
paper will present the smooth surfaces that can easily be transformed into a discrete 
representation with a PQ mesh. Then examples of skew surfaces that fit into the 
according classes will be investigated and, lastly, insight will be extended into more 
general cases. 

Planar Quadrilateral Meshes

Mesh generation that guarantees planarity
There are several options to proof if a quadrangle is planar: the sum of the corner 
angles has to be 360°; the diagonals have to intersect; the straight lines carrying fac-
ing edges have to intersect or to be parallel. From these observations strategies for 
mesh constructions can be derived. For example, if two polygons have a sequence of 
pairwise parallel edges they span a strip of planar quads. This is particularly the case 
if the polygons are congruent or similar (Figure 3). In the latter two cases the strips 
are either prisms or pyramids (See 3.1).

Planarity is also guaranteed if the four vertexes of a quad lie on a circle. PQ meshes 
whose quads possess a circum-circle (circular meshes) have many useful properties. 
Details on this, and on more sophisticated mesh generation, are given in Pottmann 
et al. 2007, 677-699.
 
Surfaces with organic PQ mesh analogues
With respect to the previous paragraph, some smooth surfaces have more or less 
obvious PQ mesh analogues. Examples of these surfaces include translational and 
rotational surfaces. Translational surfaces carry congruent and parallel curves and 
result in meshes with only parallelograms, while rotational surfaces, for reasons of 
symmetry, provide circular meshes. We will use translational and rotational surfaces 
as blueprints for the handling of ruled surfaces (see 4 and 5). Two special cases are 
the following: if a translational surface has a straight generator, it is a cylinder; if the 
meridian of a rotational surface is a line parallel to the axis, the result is a rotational 
cylinder. These two cases are developable and covered by 3.1.

By the generalisation of rotational surfaces a moulding surface can be obtained. A 
moulding surface is a sweeping surface generated by a curve on a plane that rolls on 
a cylinder. For the polyhedral version, this leads to a local rotational axis for each 
pair of consecutive polygons. All axes are parallel. It is possible to generalize this sur-
face again when the condition of parallelism is dropped (Figure 4 (a)). In both states 
of generalisation, every strip between consecutive polygons is a polygonal version 
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Figure 4: discrete analogues of a generalised moulding (a), pipe (b), and canal (c) surface.

Figure 5: transformed rotational mesh, discrete torus, discrete Dupin cyclide.

Figure 6: the three kinds of developable surfaces in their discrete analogues: prism, pyramid, and torsal 
polyhedron.
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of a rotational surface and therefore provides a PQ mesh. For more generalisations 
using affine profiles see Sauer 1970, pp. 132-135.
 
Another interesting class of surfaces for PQ meshes are the canal surfaces (Figure 
4 (c)). A canal surface is the envelope of a family of spheres. The midpoints of the 
spheres form a curve and the radius may change continuously. If the curve is a 
straight line we obtain a rotational surface. Each of the spheres touches the canal 
surface along a circle, which is a principal curvature line of the surface. One class 
of canal surfaces are the Dupin cyclides (Figure 4 (c)). If the radius of the spheres is 
constant, the result is a pipe surface like the torus (Figure 4 (b) and 5 (b)).

Lastly, it is important to mention the algebraic surfaces of degree two (quadrics). 
Any planar intersection of a quadric is a conical section. Moreover, any two parallel 
intersections of quadrics are similar curves (Lordick 2001, p. 42). Thus, every quad-
ric can be discretized with an endless set of PQ meshes.

Transformations
As soon as a PQ mesh is established we can generate new PQ meshes by certain 
spatial transformations that preserve planarity. Those are the linear transforma-
tions, namely the affine and projective transformations. Scaling in one, two or three 
axes cannot destroy a PQ mesh. This is an important observation for the construc-
tion of PQ meshes in CAD software. For example, the mesh in figure 5 (a) may look 
complex but was built from a rotational surface. Furthermore, there is an interesting 
transformation called inversion, also referred to as reflection at a sphere (Pottmann et 
al. 2007, pp. 475-478). The inversion can transform the vertices of a PQ mesh into 
the vertices of a new one. The only condition is that the PQ mesh must be circular. 
In a circular mesh each quad possesses a circum-circle. Because inversions map 
circles to circles, the new mesh is also circular. Any PQ mesh that is generated by 
rotating a polygon around an axis has to be a circular mesh for symmetry reasons 
and is a perfect candidate for inversions (Figure 5 (b) and (c)). Unfortunately, inver-
sions map lines to circles and therefore do not preserve the straight lines on a ruled 
surface. 
 
Ruled Surfaces With Organic Pq Meshes

Developable surfaces
The developable surfaces are cylinders, cones, and tangent surfaces of space curves. 
Cylinders are translational surfaces with a linear profile. One example of cones is 
the rotational cone. Surfaces of constant slope belong to the family of the tangent 
surfaces of space curves. Any developable surface contains a continuous family of 
straight lines and therefore is a ruled surface. Each of the surfaces has a well-known 
discrete analogue that consists of planar strips (Figure 6). Obviously, endless varia-
tions of PQ meshes can be established on those strips. This paper will not focus on 
this class, but concentrate on skew surfaces.
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Figure 7: hyperbolic paraboloid with translational parabolas (discretized), one-sheet rotational hperbo-
loid.
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Ruled surfaces of degree two, reguli
The ruled surfaces of degree two are the circular cones, the quadratic cylinders, 
the one-sheet hyperboloids, and the hyperbolic paraboloids. While the first and the 
second are developable (see last paragraph) they are not in the scope of the further 
investigations. But one-sheet hyperboloids and the hyperbolic paraboloids are of 
highest interest. The key property is that both of these shapes contain two families 
of straight lines. Such a family on a quadric is called a regulus. In every point of the 
surfaces two generators, one of each regulus, intersect. Numerous applications in 
buildings can be found in the work of Felix Candela, Vladimir Shukhov (Shabolovka 
radio tower), Le Corbusier (Philips Pavilion), and, as previously mentioned, Antonio 
Gaudí. One-sheet rotational hyperboloids are also commonly utilised in cooling 
towers of power stations. Shapes from reguli are especially suitable for shell struc-
tures.

Any one-sheet hyperboloid can be obtained from a one-sheet rotational hyperbo-
loid by a linear transformation. Thus it is sufficient to base studies on the latter. 
Because it is a rotational surface one possible PQ mesh is given by the meridians 
and the parallel circles (Figure 7(b) and (c)). It is a circular mesh. One strategy for a 
local mesh construction may use a discrete set of generators of one regulus. Those 
generators undergo a reflection with respect to a meridian plane. The grid of the 
generators provides the diagonals in a circular mesh. 

Any intersection of a hyperbolic paraboloid (HP surface) with a plane parallel to 
the axis of the HP surface is a parabola. Moreover, the parabolas in parallel planes 
are congruent. Thus every HP surface is a translational surface with infinite pairs of 
characteristics (Wunderlich 1967, pp. 31-32). Any such pair of parabolas provides 
a PQ mesh (Figure 7 (a)). While in every point of the HP surface the generators 
correlate with the asymptotic directions, according to the translation, any two char-
acteristic parabolas intersect in conjugate directions. 

A good method for the construction of a mesh can be derived as follows: when a HP 
surface is projected normally onto the tangent plane in its vertex, the projections 
of the two reguli can be chosen to intersect orthogonally. (Any other angle can be 
obtained by an affine transformation.) Thus a regular grid of squares or rectangles 
can be generated. The grid represents the diagonals in a mesh of parallelograms 
on the HP surface. Obviously the vertices of the mesh coincide with one half of 
the intersections of the generators (Figure 7 (b) and (c)). In a building construction 
the generators can represent the cables that are often used for the stabilization of 
quadrangular glass tiles. 
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Figure 8: a helicoid interpreted as translational surface and meshed like this.

Figure 9: discrete HP patches between consecutive generators.
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Helicoid
By applying a helical motion to a straight line that intersects the axis of the motion 
orthogonally we obtain a helicoid. The helicoid is a surface with remarkable features. 
It belongs to several classes of surfaces. It is a skew surface, a helical surface, a mini-
mal surface, and a translational surface. The latter property is not well known, but 
can actually be proved by means of descriptive geometry (Wunderlich 1967, p. 178). 
If a helix is chosen as the generator of a translational surface and is then translated 
along itself, it sweeps a helicoid within a rotational cylinder. The helix intersects the 
axis of the helicoid and has half the height of the helicoid.  After these observations 
it is easy to approximate any helicoid with a fair PQ mesh (Figure 8). The mesh on 
the helicoid can be varied by the use of different helices for the underlying transla-
tional surface. 

Discretisation of General Skew Surfaces

Local approximation
For every regular generator g of a skew surface exists a right hyperbolic paraboloid 
that in every point of g has the same tangent planes as the skew surface (Wunderlich 
1967, pp. 35-36). Furthermore, the Gaussian curvatures match. That holds for any 
touching HP surface along g. But that, in general, does not mean they have the same 
principal curvatures (Müller; Krames 1931, p. 94). Obviously, it is possible to locally 
approximate any skew surface with an HP surface. 

The according method of meshing a skew surface is to add up discrete HP surfaces 
into the warped strips that span two consecutive generators. An example is given 
in figure 9. Two polygons c1 and c2 with n vertices each represent the boundary 
curves of a surface patch. Straight lines gi span corresponding vertices i of c1 and c2. 
Thus quadrilaterals are obtained that are generally not planar and shall be filled with 
discrete HP patches. By inserting midpoints to the segments of the polygons new 
generators are obtained (Figure XX (a)). Lines of the other regulus can be gener-
ated by regularly dividing the generators gi. Here a division by 8 is chosen. In general, 
consecutive HP patches do not have the same tangent planes along the generators 
gi. For that reason triangles have to be inserted at the edges of each HP patch. The 
result is a hybrid mesh of planar quadrilaterals and triangles (Figure XX (b)). Obvi-
ously, such a mesh can be achieved from any set of straight lines and therefore can 
deal even with the worst cases and singularities such as the equivalents of torsal 
generators. An interesting creative option is to flip the edges of the filled-in trian-
gles. The problem with this version is: the discrete generators gi in general no longer 
coincide with edges of the mesh. A related hybrid tessellation on a rotational surface 
can be seen at the Swiss Re Headquarters built by Foster and Partners (Foster 2005, 
pp. 272-277). 
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Figure 10: Two views of an arbitrary skew surface with a PQ mesh.
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Compound surfaces from HP patches
If the consecutive HP patches along the generators gi have connections of at least 
class C1, the overall tessellation can be a PQ mesh. This obviously excludes the 
edges of the whole. HP patches with C1 connections can also be arranged in two 
directions, because they have two families of generators. Unfortunately compound 
surfaces derived from this algorithm suffer from massive restrictions concerning 
creativity. 

General algorithm for PQ meshes on skew surfaces
The next strategy to establish a PQ mesh on a set of generators gi of a skew surface 
works as follows: select one generator gi and divide it uniformly and accordingly 
to the design task. The points of the division span planes with the next generator 
gi+1. Let those planes intersect the next but one generator gi+2. Now the points of 
intersection on gi+2 and the primary chosen points of division can be connected by 
generators hj of a regulus that belong to the same surface of order two as gi, gi+1, 
and gi+2, in general a one-sheet hyperboloid. Now the intersections of the genera-
tors hj with gi+1 are taken as points of division like in the last step and new points 
are obtained on the generator gi+3. This can be continued until the last generator is 
reached. Finally a PQ mesh according to 3.2 can be selected (Figure 10). There are 
two options. In either case the quads have intersecting diagonals – the generators 
of both reguli.

One problem is the handling of the borders of the skew surface. A simple worka-
round is to extend the generators and thus to produce many more quads than nec-
essary. At the end of the meshing the superfluous quads are then trimmed. Another 
question is how to deal with the equivalents of the torsal generators? In this case a 
useful intersection with the next but one generator cannot be found. The algorithm 
shall detect the problem and fill the remaining holes with triangles. 
 
Application of Pq Mesh Algorithms to Selected Skew Surfaces

Conoidal surfaces, conoids
Many possible strategies for the generation of ruled surfaces are known (Müller; 
Krames 1931, pp. 20-60). In general a ruled surface can be given by three curves, 
called directrices or director curves. Any straight line intersecting each directrix is a 
generator of the surface. One directrix can be replaced by a director plane, which 
equals an ideal line. The outcome is a conoidal surface. Let one of the remaining di-
rector curves be a straight line (linear directrix). Then the resulting surface is named 
conoid. One example for a conoid is the hyperbolic paraboloid, where both director 
curves are straight lines. Another example is the helicoid, where the director plane 
is orthogonal to the linear directrix, which is the axis of the helical motion. Conoids 
with this property are called right conoids. Another kind of conoids has its application 
in the vaults of cathedrals, in particular in the choirs (Scheffers 1927, pp. 385-389). 
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The algorithm of 4.3 shall be tested with a right conoid that has a quadratic directrix, 
in particular an arc. With these specifications the result in general is an algebraic 
surface of degree four. But if a straight line and an arc are taken as boundary curves 
of a NURBS surface in CAD software, a different surface occurs. This can be seen 
with a quick glance at the parameter lines that intersect the directrices but are not 
parallel to a director plane. To yield the desired conoid another generation has to 
be used. A good method is to uniformly divide the arc c and to use planes parallel to 
the director plane to get corresponding points on the linear directrix d. Thus a dis-
crete set of generators is established which serve as the profiles gi of a loft surface. 
This loft surface is a fair approximation of the conoid and at the same time provides 
the discrete basis for the PQ mesh. The mesh can be refined by changing both the 
subdivision of the arc and the subdivision on the first generator g0.

Skew surfaces with one linear directrix and other methods
Given are two splines that are arbitrarily parametrized and serve as director curves 
c1 and c2. We can generate a distribution of generators by several methods. Option 
(a) shows an equidistant division on c1 and c2, option (b) uses the parametrisation 
of the splines, and option (c) is a conoidal surface. Another option to handle the 
distribution of the generators on a skew surface with two director curves is to add 
a linear directrix d. By moving d, the mesh design can be changed dramatically.

Conclusions

The presented methods do not focus on numeric approximation. Rather, the strat-
egy was to adapt geometric properties for the constructions. One aim was to inves-
tigate how flexible this approach is. On the other hand it was interesting to observe 
what possible designs could be gained from the underlying geometric structure. 
While the PQ mesh is designated to define the panelling of the surface, the genera-
tors can serve as additional structural elements such as beams or cables.

Ruled surfaces can be controlled by director curves, by an optional director plane, 
or a linear directrix. The mesh depends on the discrete set of generators, and the 
division on a primary selected generator. Although these are sufficient elements to 
obtain a usable mesh, it still needs some knowledge about ruled surfaces in general 
to obtain good results. Therefore further possibilities of control have to be ex-
plored in communication with users of the algorithms. 

Ruled surfaces in renderings often do not appear to be smooth. This is because 
the underlying standard triangulation used for rendering, if not corrected manually, 
consists of splinters, i.e. triangles with one or two very small angles. Thus adjacent 
triangles sometimes have heavily differing normals. In rapid prototyping this leads 
to insufficient results. The algorithms presented in this paper provide very good ap-
proximations with meshes and therefore can lead to much better results.
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